System size dependence of J/ψ production at RHIC

Aneta Iordanova, University of California Riverside

Nuclear Matter Effects

and collision system size

- Phenix has good capabilities to measure J/ψ and probe quarkonia deconfinement and other mechanisms which modify its production
- Two main sources
 - Cold Nuclear Matter effects (CNM)
 - Due to the nuclear target (systems like d+Au)
 - Hot Nuclear Matter effects (HNM)
 - Modification in the created QGP
- Strategy: <u>use different collision systems</u>
 - Measure (then parametrize) CNM effects in p(d)+A
 - A+A collisions will have both CNM+HNM effects
 - "Remove" CNM effects
 - Learn about QGP mechanisms which modify charmonium in different heavy ion systems

Phenix Detector

- Central arms: focus on electrons
 - J/ψ , ψ' , $Y \rightarrow e^++e^-$, single e^\pm
 - |y| < 0.35, $\Delta \phi = \pi$
 - EM Calorimeter, RICH
 - VTX → flavor separation (2011+ Upgrade)
- Forward arms: focus on muons
 - J/ ψ , ψ' , Y $\rightarrow \mu^+ + \mu^-$, single μ^{\pm}
 - $-1.2<|y|<2.2, \Delta\phi=2\pi$
 - Muon Tracker/ID
 - FVTX → flavor separation (2012+ Upgrade)
- Broad contribution to the world's J/ψ measurements:
 - Large energy range: $\sqrt{S_{NN}}$ = 39 − 200 GeV
 - Collision species: p+p, d+Au, Cu+Cu, Au+Au,
 U+U, (new) He+Au, p+Au, p+Al

Measuring J/ψ in Phenix

Calculate the invariant mass from decay leptons

Measuring J/ψ in Phenix

Challenges at high multiplicity
 → high background

J/\psi nuclear modification

- Competing effects from COLD and HOT nuclear matter
 - Complex admixture of different mechanisms
 - Dependent on kinematics
- Experimentally, separation not clearly established

P15 Experimental control parameters

- Control the properties of the created state
 - Each parameter → probes different admixture of nuclear modification

System Size/ Collision Asymmetry

Change the relative contributions of **Cold** and **Hot** nuclear matter

Collision Energy
Change system energy density

Centrality

Suppression vs path length

Rapidity

Probes different gluon (anti)shadowing

Momentum

Hard collision dynamics

Particle Species
Break-up, Temperature?

Revisited Strategy: Increase variety of collisions-systems to "control" the magnitude of physics effects

Measurements in cold systems

J/ψ in d+Au

- d+Au → nuclear/COLD effect baseline, asymmetric
- d+Au compared to the production cross section baseline in p+p
 - Forward/backward asymmetry
 - More suppression at forward (dgoing) rapidity
- Cold Nuclear Matter Effects
 - Nuclear shadowing(gluon pdf modification in target nucleus) and cc break up describes the minimum bias data well
 - Does not reproduce the centrality dependence

Hot systems

- J/ψ suppression in Au+Au at 200 GeV with respect to p+p
- Suppression increases with increasing energy density (N_{part})
- Stronger suppression at forward/backward rapidities compared to central rapidity
 - Does not increase with increased energy density as seen in N_{ch} vs η
- Very little, if any, energy dependence
- Models reproduce data well
 - Include complex admixture of effects (e.g. dissociation, coalescence, CNM effects)
 - Energy dependence: coalescence screening balance

Probing Hot/Cold

J/ψ in Cu+Au

- Au-going direction
 - Similar suppression in Cu+Au compared to Au+Au
- Cu-going direction
 - More suppressed

Disentangle CNM effects

J/ψ in Cu+Au

Ratio ~ 20% for non-central data CNM effects → asymmetric in rapidity

Forward CNM effects (Cu-going)

- gluon modification J/ψ
 probes gluons at high-x in Cu,
 low -x in Au
- dynamical processes
 - J/ψ short crossing proper time in Au → probes Eloss
 - long crossing proper time in Cu → cc-breakup by nucleon collisions

Backward (Au-going) → Reversed CNM effects

11

Disentangle CNM effects

J/ψ in Cu+Au

CNM calculation:

J.Nagle, A.Frawley, L.Levy, M.Wysocky, PRC 84 044911 (2011)

- only includes shadowing
- Uses EPS09 nPDF and 4 mb effective cross section at all rapidities

Ratio ~20% for non-central data

CNM effects → asymmetric in rapidity

- Comparison to a simple
 CNM calculation
 - Gives the right direction and magnitude
 - Difference due to CNM effects
 - HNM effects not included (e.g. color screening will increase the ratio)

J/ψ in U+U predictions

J/ψ in U+U

- The higher energy density (15-20% expected in this model)
 - should lead to stronger suppression due to color screening
- Larger N_{coll} (than in Au)
 - Should lead to increased charm by statistical coalescence
- Both effects in opposite direction
- CNM: gluon shadowing is expected to be similar for U+U and Au+Au

J/ψ in U+U measurement

- Observed weaker suppression in central U+U compared to Au+Au
- Higher coalescence?

Conclusion

- Phenix has measured J/ ψ production in various collision systems and center-of-mass energies
- Different collision systems
 - add variation to the initial/final state
 - allows to better control the admixture of COLD/HOT effects which modify the J/ ψ production
 - can we factorize CNM effects → collective phenomena observed in d+Au
- Two latest systems
 - $Cu+Au \rightarrow adds$ variation to the initial state
 - shows significantly stronger J/ ψ suppression in the Cu-going direction, consistent with the direction and magnitude expected from differences in EPS09 shadowing between Cu and Au
 - U+U \rightarrow the largest system studied at RHIC
 - Shows less suppression in central data than Au+Au at the same, forward, rapidity

Backup

J/w energy dependence

- At LHC
 - Suppression is much reduced
- Recombination (coalescence) important at LHC
 - Smaller R_{AA} at low p_T at RHIC energy
 - Larger v₂ at LHC

ALICE, PRL 109,072301 (2012)

Heavy quarks as a probe of QGP

"If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents cc binding in the deconfined interior of the interaction region."

- Original idea, Matsui & Satz, 1986
- The color (Debye) screening modifies the particle potential due to the charge density of the surrounding medium
- Quarkonium potential in the medium becomes shallower
 - With increasing T different qq states "sequentially melt"
 - J/ψ becomes unbound → suppression in QGP!

$$V(r) = \sigma r - \frac{\alpha}{r}$$

$$V(r,T)\sim \frac{\sigma}{\mu}\left[1-e^{-\mu r}\right]-\frac{\alpha}{r}e^{-\mu r}$$

Collision system size, 200 GeV

- Reference systems
 - p+p → baseline reference
 - d+Au →nuclear/COLD reference
- Heavy-ion/HOT systems at the same center of mass energy
 - Cu+Cu → smaller system
 - Cu+Au → asymmetric system
 - Au+Au

energy density

U+U → heavy system

Revisited Strategy: Increase variety of collisions-systems to "control" the magnitude of physics effects

Can we factorize CNM effects?

- CNM effects
 - Complex admixture of different mechanisms
 - Strongly dependent on rapidity
- Open questions:
 - Can we factorize them?
 - Are there HNM effects in p(d)+Au?
 - Collective phenomenon seen
 - Do they affect J/ψ production?

Future systematic studies possible in He+Au, p+Au, and p+Al datasets

$J/\psi vs \psi'(TIME?)$

ψ'→ e⁺+e⁻ in d+Au central arm

- ψ' more suppressed in central d+Au than J/ ψ
- Smaller binding energy → more sensitive to final state effects

J/ψ vs heavy flavor(TIME?)

d+Au

- Similar modification at forward rapidity
- Distinct difference at backward rapidity
 - $p_T < 2.5 \text{ GeV/c}$
 - Dominated by charm
- J/ψ additionally sensitive to cc breakup by the nuclear matter:
 - Longer crossing time in nucleus?
 - Higher co-mover density at backward rapidity?

Y family in Au+Au collisions

"Melting Temperature" "Color Screening"

$$R_{AA} = \frac{1}{N_{coll}} \frac{Y(AA)}{Y(pp)}$$

- Y(1S+2S+3S) suppression in central collisions
 - Consistent with complete suppression of Y(2S+3S)
 - Consistent with R_{AA} observed at LHC Aneta I(CMS)

U+U: larger system

J/ψ in U+U

 New RHIC energy density record in U+U collisions

 $\varepsilon_{\rm B}$ = 6.15 GeV/fm²/c.

- Moderate increase from central Au+Au to very central U+U (20%)
 - Some expected up to 55% for tip-tip orientation
 - PRL 94, 132301 (2005)

Upper U+U point 1% most central, all other 5% centrality bins

$$\epsilon_{\rm B} = \frac{1}{\tau S_{\perp}} \frac{dE_{\rm T}}{dy}$$

Charmonium measurements

There is now a long history of studying charmonium in A+A collisions.

$\sqrt{s_{NN}}$	Species	Rapidity	Experiment
(GeV)			
17.3	Pb+Pb, In+In	0 < y < 1	NA50,NA60
19.4	S+U	0 < y < 1	NA38
64, 39	Au+Au	-2.2 < y < -1.2	PHENIX
		$1.2 \le y \le 2.2$	
193	U+U	2.2 < y < 1.2	PHENIX
200	Au+Au, Cu+Cu	2.2 < y < 1.2	PHENIX
		y < 0.5	
200	Cu+Au	-2.2 < y < -1.2	PHENIX
		$1.2 \le y \le 2.2$	
2760	Pb+Pb		ALICE

